Soil composition and elevation along the forested dune ridge at the University Field Station

Michelle McDonald¹ and L. Gordon Goldsborough² ¹Environmental Science Program, University of Manitoba ²University Field Station (Delta Marsh), University of Manitoba Winnipeg, Manitoba R3T 2N2

Introduction

The beach ridge separating Delta Marsh from Lake Manitoba was formed over 2,500 years ago as a result of erosion of material deposited at the mouth of the Assiniboine River (Teller and Last 1981). Variations in the beachfront morphology and ridge have occurred historically due to wind and wave action from the lake and, since around the turn of the century, to disturbance caused by cottage development and lake level regulation. The sand ridge is now mostly covered by a thin organic litter layer but there are several places where the sand is exposed. Composition of the forest canopy on the ridge was described by Mackenzie (1982) and numerous studies of the songbirds and other fauna have been conducted over the 30-year period since field station was established. In 1993, a student in the co-operative education program of the Environmental Science Program at the University of Manitoba, established 26 transects along the ridge between the mouths of the Assiniboine River Diversion and Cram Creek (Flynn 1993). The purpose of the transects was to provide information on tree distribution, soil disturbance, herbaceous plant cover, and penetrance of the canopy by solar irradiance, and to form a basis for long-term monitoring of potential ridge erosion. During the summer of 1996, many of these transects were re-visited to collect additional data, including the relative elevation of positions along each transect, the depth of the organic soil horizon, and the texture of the ridge soil.

Materials and Methods

North-south transects, running from the shoreline of Lake Manitoba to the marsh beyond the tree canopy of the beach ridge, were established in 1993 (Fig. 1). The transects were located at about 100 m intervals, numbered consecutively from west to east, along the ridge. A wood stake was erected on each transect at the time of transect establishment, either at a point 60 meters south of the lake or at the end of the transect (Flynn 1993). The south-most stakes for transects 14 through 26 were relocated and used as the starting points for the 13 transects monitored in this study (Table 1). The UTM

Table 1. Comments on locations of stakes used to mark the south end of north-south transects along the forested dune ridge between the mouths of the Assiniboine River Diversion and Cram Creek. All stakes were located on the north side of the road along the forested ridge.

Transect	Location
14-20	at approximately 100 m intervals, to the west
	of Wardle along the foot path
21	135 m west of stake 22
22	115.5 m west of stake 23
23	107 m west of stake 24
25	96 m west of stake 26
24	92 m west of stake 25
26	75 m west from red gate at the corner of the
	summer road and the diversion road

Figure 1. Locations of transects 14 to 26, established in 1993 along the forested beach ridge (indicated by darker shading), that were re-located and sampled in 1996.

Table 2. Univeral Transverse Mercator (UTM) coordinates (Zone 14, NAD83) of permanent stakes marking the north or south ends of selected transects along the forested beach ridge, as determined by a base-corrected Trimble GeoExplorer II GPS receiver. The coordinates are accurate to about 1 meter. All sites monitored in 1996 were positioned relative to the south stakes.

Transect	End	Easting (meters)	Northing (meters)
21	south	544,183	5,559,264
22	south	544,287	5,559,219
24	north	544,485	5,559,313
24	south	544,490	5,559,270
25	south	544,589	5,559,286

coordinates of several stakes were determined using a base-corrected GPS receiver (Table 2) although dense foliage prevented us from obtaining coordinates for all stakes.

A compass was followed from each reference stake, northward to the lake and southward to the marsh, marking each 10 m interval with yellow survey tape tied to a ground point. At each of these points, the elevation above sea level was found. All elevations were measured using a Wild NA20 survey level starting from a benchmark elevation of 249.7 m above sea level at stake 21 near Mallard Lodge.

Soil samples were collected every 10 m along each transect. The top litter layer (O horizon) was cleared using a small shovel, exposing the soil below. A 30 cm deep hole was dug with a gardening trowel and the depth

of the soil horizons, determined by color change, was measured. Soil was collected carefully from each horizon and placed in a plastic bag. On return to the lab, soil bags were refrigerated at 4°C until analyses were done. The soil analyses, which occurred within the following 24 hours, consisted of the determination of pH, conductivity and percentages of organic material, sand, silt, and clay. Measurements for the uppermost soil stratum are reported here; data for other strata may be obtained from the University Field Station (Delta Marsh).

A saturation paste was made from each soil sample using distilled water. Approximately 15 mL of soil was added to a 25 mL beaker that had been doubly rinsed with distilled water. Distilled water was added until a thick, yet flowing, consistency was reached. More soil and distilled water were added until the volume of the paste reached about 20 mL. This was left to stand for 1 hour. Then, any water that collected on the surface was decanted or, if the paste had stiffened, more distilled water was added. The pH of the saturation paste was determined using a Accumet/Fisher meter and the conductivity was measured using a Corning M90 meter.

Crucibles of known tare weight were half filled with a soil subsample and dried at 100°C for four hours then weighed. The crucibles were placed in a 400°C muffle furnace for four hours to remove organic matter then reweighed. The inorganic residue in the crucible was cooled then ground using a mortar and pestle. This material was sieved through the 270 sifter with 53 μ m mesh. Sand particles did not pass through the mesh and these were weighed. The four weight measurements for each sample were used to calculate the % organic content

Table 3. Elevation (meters above sea level) along 13 transects perpendicular to the forested beach ridge separating Lake Manitoba from Delta Marsh, 1996. Sites listed as S were located marsh-ward from the southern permanent stake marking the transect; sites listed as N were located lake-ward from the stake. Elevations are relative to a geodetic benchmark (249.7 m) situated east of Mallard Lodge.

Position	26	25	24	23	22	21	20	19	18	17	16	15	14
40S											248.4		
30S			247.9				248.6		248.4		248.7	248.3	
20S			248.2				248.6		248.4		248.6	248.5	
10S			249.2				249.0		248.5	248.2	248.9	248.6	
Stake	248.3	248.5	248.7	248.6	248.6	249.6	248.5	248.4	248.5	248.4	249.3	248.7	248.8
10N	248.0	248.7	249.0	248.0	248.4	248.7	248.6	248.3	248.8	248.9	250.2	248.9	248.9
20N	249.0	251.5	249.1	248.6	247.9	248.5	249.0	248.8	249.1	249.1	248.9	250.5	249.9
30N	251.5	249.6	249.1	248.7	248.2	248.9	249.4	249.6	249.4	249.3	248.6	251.1	250.7
40N			248.3	249.1	248.3	249.3	249.3	249.6	249.8	249.1	249.5	250.1	251.3
50N				250.0	248.6	249.4							
60N				248.6	248.7	247.8							
70N					249.0								
80N					251.5								
90N					249.2								
100N					247.8								

Soil composition on forested dune ridge

(weight loss on ignition of dry sample), % sand (weight retained on sieve), and % silt+clay (weight of inorganic residue minus sand fraction) of the soil.

Results

The topography of the forested beach ridge is highly irregular, consisting of undulating sand hills amongst depressions. Consequently, although elevation was usually lowest at the southern end of each transect (about 248.4 m asl), it did not increase consistently as one proceeded northward (Table 3). The maximum elevation on these transects was 251.5 m. Depending on the orientation of a sampling site with respect to local topography (exposed hilltop versus protected depression), the depth of the uppermost soil horizon varied from 1 to 30 cm (mean = 12 cm; Table 4). Soils were generally circumneutral (Table 5) with little spatial variability, although those samples collected nearest the lakeshore were more alkaline (pH 8-9). Soil conductivity was variable, with no apparent relationship with position along the transects (mean = 324 mS/cm; Table 6). Highest conductivity values tended to occur at sites with the lowest elevations. Organic matter content (% total dry weight) was highest on the marsh (south) ends of the transects and it generally decreased lake-ward (Table 7). Mean organic matter content was 13%. As expected, sand was the largest constituent of the soil, contributing an average of 78% of total soil mass and up to 100% in some samples (Table 8). The silt and clay fractions comprised the remaining 9% of soil mass although values as high as 38% were found at the marsh end of some transects (data not shown).

Table 4. Depth of the uppermost soil stratum (cm) along 13 transects perpendicular to the forested beach ridge separating Lake Manitoba from Delta Marsh, 1996.

Position	26	25	24	23	22	21	20	19	18	17	16	15	14
40S											17		
30S			7				7		18		23	2	
20S			5				9		13		15	4	
10S			20				5		14	30	6	8	
Stake	10	8	8	17	9	22	7	21	10	8	16	6	4
10N	7	9	6	6	5	21	7	17	6	9	7	3	13
20N	3	30	4	5	30	2	4	4	4	9	11	3	6
30N	30	6	7	6	10	6	18	1	1	5	8	30	3
40N			30	5	7	5	30	6	1	2	6	30	30
50N				30	5	3							
60N				30	3	30							
70N					10								
80N					6								
90N					30								
100N					30								

Table 5. pH of the uppermost soil horizon along 13 transects perpendicular to the forested beach ridge separating Lake Manitoba from Delta Marsh, 1996.

Position	26	25	24	23	22	21	20	19	18	17	16	15	14
40S											7.9		
30S			8.1				6.3		6.9		7.4	7.6	
20S			7.1				6.7		6.7		6.9	7.3	
10S			7.1				6.7		7.0	6.8	6.8	6.5	
Stake	6.9	6.8	6.8	7.1	7.6	6.9	6.7	6.8	6.7	7.6	6.8	6.0	6.3
10N	6.7	6.3	6.3	8.4	7.4	6.9	7.0	6.8	7.1	6.9	6.6	6.0	5.8
20N	5.9	7.1	6.5	7.1	7.0	6.9	7.0	6.6	6.8	6.1	7.0	6.5	6.2
30N	7.4	6.5	6.6	7.2	7.1	7.3	7.5	6.7	6.8	6.3	6.5	7.4	6.1
40N			9.0	7.4	7.3	7.1	7.6	6.8	7.0	6.8	6.7	7.4	7.2
50N				7.4	7.3	7.5							
60N				9.0	7.1	8.2							
70N					7.3								
80N					7.1								
90N					7.3								
100N					9.0								

Position	26	25	24	23	22	21	20	19	18	17	16	15	14
40S											1394		
30S			1339				53		303		1194	2	
20S			924				304		208		411	1780	
10S			47				201		317	532	226	315	
Stake	317	205	213	295	327	220	222	533	187	485	104	254	688
10N	207	313	203	1036	7	278	97	284	268	182	307	292	211
20N	176	70	490	255	1796	241	3	167	202	5	71	248	324
30N	45	196	276	354	906	221	38	177	282	263	207	29	294
40N			132	140	1206	3	41	332	609	265	252	35	49
50N				58	8	134							
60N				146	290	425							
70N					180								
80N					98								
90N					42								
100N					89								

Table 6. Conductivity (mS/cm) of the uppermost soil horizon along 13 transects perpendicular to the forested beach ridge separating Lake Manitoba from Delta Marsh, 1996.

Table 7. Organic matter content (% dry mass) of the uppermost soil horizon along 13 transects perpendicular to the forested beach ridge separating Lake Manitoba from Delta Marsh, 1996.

Position	26	25	24	23	22	21	20	19	18	17	16	15	14
40S											11		
30S			58				18		8		15	46	
20S			48				25		12		14	23	
10S			1				3		7	35	16	17	
Stake	7	4	8	5	9	4	17	10	6	9	7	25	41
10N	9	3	17	37	18	4	16	9	9	12	22	16	25
20N	17	1	14	17	15	13	5	8	8	10	2	19	10
30N	0	6	38	30	39	9	1	6	11	15	14	1	4
40N			0	8	19	4	0	10	23	9		0	2
50N				1	32	3							
60N				1	9	0							
70N					8								
80N					1								
90N					0								
100N					0								

Table 8. Sand content (% dry mass) of the uppermost soil horizon along 13 transects perpendicular to the forested beach ridge separating Lake Manitoba from Delta Marsh, 1996.

Position	26	25	24	23	22	21	20	19	18	17	16	15	14
40S											51		
30S			31				67		77		54	48	
20S			44				62		76		70	61	
10S			97				94		81	35	62	63	
Stake	82	88	81	87	84	84	71	59	87	77	88	52	43
10N	85	85	73	53	71	78		64	80	80	68	75	61
20N	78	99	86	77	68	80	91	86	87	78	95	71	79
30N	99	90	53	65	47	86	99	89	83	82	74	99	90
40N			100	87	76	91	100	85	67	83		99	97
50N				98	55	96							
60N				99	87	100							
70N					87								
80N					98								
90N					99								
100N					99								

Acknowledgements

This project formed a work term under the Environmental Science Program at the University of Manitoba. It was supported by the University Field Station (Delta Marsh), the Faculty of Science at the University of Manitoba, and NSERC as a contribution to the Canadian Ecological Monitoring and Assessment Network (EMAN). We thank Maria Zbigniewicz for advise on soil sampling and processing methods.

References

- Flynn, C. 1993. An assessment of the forested dune ridge at Delta Marsh. Work term report for course 1.399 at the University of Manitoba.
- Foth, H.D. 1978. Fundamentals of Soil Science, 6th ed. John Wiley & Sons.
- MacKenzie, D.I. 1982. The dune-ridge forest, Delta Marsh, Manitoba: overstory vegetation and soil patterns. Can. Field-Nat. 96:61-68.
- Teller, J.T. and Last, W.M. 1981. Late quaternary history of Lake Manitoba, Canada. Quat. Res. 16:97-116.